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Abstract. A new method for approximating magnetostatic field problems is given in this 
paper. The new method approximates the scalar potential for the magnetic intensity and is 
based on a volume integral formulation. The derivation of the new computational method 
uses the spectral properties of the relevant integral operator. The corresponding algorithm is 
similar to that obtained from coupled differential and boundary integral approaches. Conver- 
gence and stability theorems are proven. Finally, convergence results in actual computations 
are compared with results for the usual volume integral method used in GFUN3D. 

1. Introduction. In this paper we define a new numerical method for magnetostatic 
field computation. We specifically consider the problem of calculating the nonlinear 
static field effects produced by the presence of iron-type materials. Applications for 
these problems occur in, for example, the design of accelerator and beam control 
magnets, fusion devices, electric motor design, and magnetic tape head design. 

A variety of numerical methods for the solution of magnetostatics problems have 
been proposed and some general purpose codes have been produced [1], [2], [4], [5], 
[8], [12], [13]. For examples of magnetic field calculations, see [4], and the references 
therein. The magnetostatic field problem can be stated as an elliptic interface 
problem and the analysis presented in [3], [8] is applicable. Integral formulations of 
this problem have also been considered [6], [11]. 

In this paper, a new scalar potential integral formulation of the nonlinear 
magnetostatic field problem is defined and analyzed. To motivate the new method, 
we give an analysis for constant permeability problems which shows that the large 
errors in the iron domain observed with the usual volume integral method lie in 
subspaces perpendicular to gradient functions. The new method is designed to 
eliminate errors of this type while generalizing to a method for nonlinear problems 
which exhibits uniform convergence in the iron domain even as the permeability 
becomes uniformly large. 

The new method is derived as a volume integral formulation which approximates 
the magnetic intensity H in terms of the gradient of a scalar potential. It is then 
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observed that the method can be implemented with computational work similar to a 
scalar potential-boundary integral formulation. In fact, if the iron domain is smooth 
enough so that certain results from classical potential theory hold then the method 
can be reformulated as a scalar potential-boundary integral method. 

The new method seems particularly well suited for implementation as a general 
three dimension algorithm. Like the usual integral method, the mesh need only be 
described on the iron domain and hence the user input problem is simpler than that 
for differential methods which require mesh generation on the entire space. Like 
coupled differential and boundary integral approaches, only the evaluation of sparse 
matrix systems in the interior and full matrix systems on the boundary nodes are 
required. For implementation with piecewise linear functions on tetrahedra, the 
method uses the same singular integrals already evaluated in GFUN3D [1] and some 
easily evaluated gram or mass matrices associated with standard finite element 
problems. Off iron calculations are also economical since unlike GFUN3D, only the 
boundary nodes enter into the calculation. 

The outline of the remainder of the paper is as follows. In Section 2, the 
magnetostatic field problem is defined and it is shown that the integral method 
exhibits high permeability errors (at least in constant permeability calculations). In 
Section 3, the new method is described and its efficient implementation is discussed. 
A nonlinear convergence and stability analysis is presented in Section 4. The 
analysis used is similar to that given by Friedman. In Section 5 results of actual 
computations are compared for the new approach and the usual volume integral 
method. 

2. High Permeability Errors in Volume Integral Approaches. The basic equations 
for magnetostatics can be derived from Maxwell's equations and are given in terms 
of the magnetic inductance B, the magnetic intensity H, and the current density J, 

divB = 0, curl H = J. 
These equations are connected by a constitutive relation B = p(x, H)H where the 
permeability ,u is an experimentally determined nonlinear function of H and posi- 
tion. In addition, the normal component of the B field and the tangential compo- 
nents of the H field are continuous across the boundary of regions with different 
permeability. 

Typical magnetostatic field problems involve regions, which we shall denote S2, 
,containing ferromagnetic material. We shall refer to the complement of the region i2, 
as the exterior even though it may have components which are surrounded by S2. 
Throughout the exterior region we always have t(x, H) = 1. 

One way of solving the above problem is by the introduction of the volume 
integral operator G defined by 

(2.1) G(M) 4 7fM ( - v( dx . 

The integral operator G maps vector functions defined on i2, into vector functions 
defined on R3. Define the field due to sources HS as the field observed without the 
iron material present. HS is given by the integral relation 

(2.2) Hs = + J X V J dx'. 47T lIx -x'I 
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We shall assume HS is known since (2.2) can be calculated analytically or approxi- 
mated numerically to within reasonable precision. 

Define the magnetization M and the field due to magnetization HM by 

(2.3) M=B-H and HM=H-HS. 

It then can be shown that 

(2.4) HM = G(M). 

By combining the above identities one can easily derive the nonlinear integral 
equation 

(2.5) x(x, H) 'M(x) - G(M)(x) = H 
where x(x, H) = u(x, H) - 1 and H H(M) = HS + G(M). 

Before proceeding further, it is convenient to define some notation. Let the L2 
vector inner product on the iron domain be denoted by (., ), i.e. 

(u, v) = u(x) .v(x) dx. 

The corresponding norm is denoted by 
There are various techniques available for discretizing (2.5) which lead to similar 

numerical algorithms. As a typical example consider the Galerkin discretization. 
First assume that we have defined approximation subspaces {Sh} in L2( 2,)3. 
Typical subspaces can be defined, for example, by breaking the iron domain into 
subregions and considering subspaces of functions which are piecewise polynomial 
on each subregion in each component. The approximate solution Mh is defined to be 
the unique function in Sh satisfying 

(2.6) (X Mh - GMh, I'h) = (HS,4/h) for all 4h in Sh 

Here and in what follows we shall leave out the (x, H) in x(x, H) for notational 
convenience. 

The reason that (2.6) exhibits errors in high permeability calculations can be 
illustrated by considering constant permeability problems. We shall need some 
auxiliary subspaces of L2( 21)3. Define 

K = {4 ' I= Vk for some E H1(S21)}, 

KO = {4 i I= Vk for some E Ho'(s21)}, 
KH = subspace in K perpendicular to KO, 

N = subspace in L2(721)3 perpendicular to K. 

The space H1(s21) is the Sobolev space of order one on 21. HoJ(21) is the subspace of 
H'(01) whose boundary trace also vanishes (see [9], [10]). 

The following results for the operator G are proven in [7]. 
(i) G is a nonpositive symmetric operator on L2(21)3. 
(ii) The spaces KO, KH' N are invariant under G. 

(iii) N is the null space of G. 
(iv) G is minus the identity on KO. 
(v) The eigenvalues of G on KH lie in the interval [-1, -e] where 0 < 1 is a 

positive constant which depends only upon the domain 21. 
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We consider the constant permeability problem 

(2.7) _ M M-G(M) = Hs. 

For illustration, we shall assume that the integral operator G can be calculated 
exactly, however small errors due to numerical quadrature or discretization are made 
in the approximation Hs of Hs. Thus we consider the approximate problem 

(2.8) _ M -G(M) = Hs 

The errors in Hs will in general produce small error components which lie in the 
space N. Error components in N are then amplified by (Ao - 1) in the solution M. 
Observe that from the spectral properties of G, the components of Hs in K are only 
increased by a factor of at most e-1. Thus as [t gets large, the null space errors will 
eventually dominate the true solution. 

From the above discussion, it is clear that high permeability errors can be reduced 
in constant permeability problems by projecting the approximate field due to 
sources or the resultant magnetization into K. For nonconstant permeability, it is 
not sufficient to project Hs or the resultant magnetization onto K. The method 
described in the next section has convergence estimates which are independent of the 
permeability as the permeability gets uniformly large and thus succeeds in reducing 
these errors while generalizing to variable and nonlinear y problems. 

3. The New Method. The new method is described in this section. Using the 
properties of the operator G, an implementation of this method is given which only 
requires sparse matrix operations in the interior of the iron domain and full matrix 
calculation from boundary to boundary elements. The resulting discretization is 
similar to a coupled scalar potential-boundary integral type formulation. We believe 
that this approach is computationally competitive with any existing approach. 

The arguments given at the end of Section 2 imply that with constant permeabil- 
ity, a necessary and sufficient condition for the B field to be uniformly bounded as 
the permeability becomes large is that the field due to sources Hs be in K. Thus we 
shall assume throughout this paper that Hs is in K. Note that this condition is satisfied 
when the average current enclosed by every loop in the iron domain is zero. From 
Eqs. (2.3) and (2.4) we see that H is also in K. The new method is then defined to be 
the H formulation of the usual volume integral method posed on subspaces of 
gradient functions. Thus we seek the solution of the problem 
(3.1) (I-G -)H=Hs whereHisinK. 

The reason that (3.1) is an improvement to (2.5) can now be stated. As long as the 
ratio Xmax/Xmin is not large then the condition number of the operator (I - G-) is 
bounded independent of the magnitude of X. Thus one expects that the correspond- 
ing approximation method converges with rates that are also independent of the 
magnitude of X- 

Let P denote the L2(s2j)3 orthogonal projection onto K. Since K is the orthogonal 
complement of the null space N, the above problem is equivalent to the problem 

(3.2) (I-GP>c)H=Hs forHinK. 

To discretize the above problem, we first introduce approximation subspaces { Kh } 
of K. The natural way to define Kh is by first defining a standard scalar-valued 
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approximation subspace { Sh } on 2, and then defining 

Kh = {VfVlPinShb@ 
An example of Sh is given by triangulating the domain i2, and letting Sh be the space 
of functions which are continuous on 2, and piecewise linear on the triangles. For 
such subspaces, the functions in Kh are piecewise constant on the triangles and the 
number of basis elements is the number of triangular vertices (nodes) minus one. 

The new discrete method is then essentially the Galerkin method applied to (3.2). 
Specifically, the approximate solution Hh is defined as the solution of the problem 

(3.3) (Hh GPhV(X,Hh)Hh, 'Ph) = (HS,4Ah) for4AhinKh. 

The operator Ph is defined to be the L2(Q2J)3 orthogonal projection onto Kh. We 
shall see in the next section that problem (3.3) has a unique solution under 
physically reasonable assumptions on the permeability function. In addition, error 
and stability estimates for the solution in the iron domain will be given which are 
independent of the permeability as the permeability gets large (Theorem 2). 

We next consider implementation of (3.3). First observe that (3.3) can be written 

(3.4) Hh - GhPh(xHh) = PhHS, 

where the discrete operator Gh is defined by Gh'h = oh and oh satisfies 

(3.5) (oh I (h) = (GPh, (h) for all Wh in Kh 

We shall solve problem (3.4) by matrix iterative techniques. Note that to solve (3.4) 
with iterative techniques it is only necessary to evaluate the action of the operator on 
the left-hand side on functions in Kh.** Thus we must be able to evaluate Ph and Gh. 

To evaluate Ph it is only necessary to solve the standard sparse matrix problem 
associated with the Neumann problem on the subspace Sh or equivalently solve the 
L2(g1)3 Gram matrix for the subspace Kh. The computation of Gh leads to the same 
matrix problem as for Ph and the evaluation of the quantities 

(3.6) (Gh,h () = Fi 

as (i ranges over all of the finite element basis functions of Kh. A priori, it looks like 
the evaluation of the quantities in (3.6) requires the multiplication of a full matrix 
times a vector with dimension equal to the number of iron nodes. We shall 
demonstrate that (3.6) can be evaluated in far fewer operations. The key observation 
is that from the spectral results for the operator G we have 
(3.7) (G + I)p = O for4'inKo. 
We shall assume that we have a finite element basis for the functions in Sh for which 
functions can be represented 

No Nb 

h= CiTi + dijPi. 
i=l i=l 

Here the functions { Ti } are zero on aQ and the functions { j3i } are nonzero only near 
the boundary. We also define Sho and Shb by 

Sho= spanTi}, i= 1,...INo 

= spant{i}, i l,...,Nb. 

**For a description,of how this can be done with the similar problem (2.5) see [11]. 
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Note that the dimension of Sh is essentially the number of interior nodes while the 
dimension of Sh is essentially the number of boundary nodes. Let Ah and oh be 
functions in Kh; then 4h = V and ah = VQh for some functions 0:h and nh in Sh. 

Decompose f:h and qh by 

~kh=~h?4'hand +1h1h qbh Oh 
= 

4h + Obh and h = nOh + h 

where ph, nh (resp. 4, h ) are in Sh (resp. Shb). Then (3.7) implies the identity 

(3.8) (GhAPh, Oh) = ((G + I)vh vh) -(4h' Oh). 

Thus for any given function Ah, the evaluation of (3.6) requires a sparse matrix 
evaluation to compute 

('h,i) fori =1...,N, 

and a full Nb X Nb matrix evaluation to compute 

((G + I)vbh, vf,i) fori = 1,. ..,Nb. 

We finally note that field approximation outside the iron is calculated from the 
formula 

Bh(x) = (Hs + GMh)(x) whereMh = PhXHh. 

Decomposing Mh = Mh + Mh and noting that G of functions in Ko is zero outside 
of S2 gives that 

Bh(x) = (Hs + GMhb)(x) for x not in 2,. 

Thus only the boundary nodes need be used to calculate fields outside of the iron 
domain. 

4. Analysis of the Discrete Method. The new method is analyzed in this section. 
Convergence and stability results are given under certain monotonicity assumptions 
for the susceptibility function X. We demonstrate that these monotonicity assump- 
tions hold for the susceptibility functions of isotropic iron materials satisfying 
physically reasonable assumptions. 

For our existence theorems we shall require that x(x, H)H be strongly monotone 
and Lipschitz continuous in L2(2,)3, that is 
(a.1) (x(x, HI)HI - X(x, H2)H2, H1 - H2) ) Co( HI - H2, H1 - H2) 

and 

(a.2) jjX(x, H1)HJ - -(x, H2)H2jj s C1J1JH - H2)J 
for constants CO > 0 and C1 > 0. Note that x(x, H)H is the magnetization corre- 
sponding to the field H. For many applications, H is a priori bounded and CO may 
be comparable to C1. 

The following two theorems give stability and convergence results for the new 
method and its discretization. 

THEOREM 1. If Assumptions (a.1) and (a.2) hold then (3.1) has a unique solution. 

THEOREM 2. If Assumptions (a.1) and (a.2) hold then (3.3) has a unique solution Hh. 
Furthermore, if H solves (3.1) and 8 = inf,,E K, IIH - 411 then 

(4.1) IIH - HhI I 8 (1 + C + C1 J 
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From (4.1) we see that the discrete method gives quasi optimal convergence to H 
in L2(s2)3. As we shall demonstrate, for many applications the ratio C1/Co is 
bounded even though the permeability is large and thus the constant 

I+e-1/2 + C1 
C(X)-+ I + COe 

is also bounded. 
We shall prove only Theorem 2. The proof of Theorem 1 is similar to the existence 

and uniqueness part of Theorem 2. The techniques used in these proofs are similar 
to those given by Friedman in [5]. 

Proof of Theorem 2. We shall first set up some notation for the proof. Introduce 
the additional inner products on K and Kh by 

((u, v)) -(G-1u, v) for u, v in K, 

((u, v))h -(G-Ju, v) for u, v in Kh. 

By (v) and (3.5) the corresponding norms [ and [ Ih satisfy the estimates 

(4.2) < [U]2 < -1ltutt2 

and 

(4.3) ~~~~~~1jUl12 [U]2 < &tut (4.3) ||| uh <Elll 
Also, forH' e KandHI e Khlet 

M' - x(x, H')H' and Mh X(X, H)H h 

and finally 

Rh6 0O- GhPh (X, ) and RO6-6- G (xI O). 
Our approximate problem (3.3) can then be written 

RhHh = PhHs. 

We obviously have for H,, and Hh2 in Kh 

KR h Hh - R h Hh, Hh - Hh2h 

(Hl,, Hh,I Hh - Hh2 )h + ( Mhl - MI Hh - HI 
By (a.1) 

( 
Mh- Mh2 

H, _ Hh2) C|H 
-Hh22 ||2COH Hh ]h2 

Combining this with (a.2) gives 

(4.4) (1 + (C()[Hh - h KKRhHh -RhH,2,Hh - Hh ))h 

< (1 + C)[ Hh - Hh ]h- 

By the standard theory of monotone operators [14], (4.4) implies existence and 
uniqueness of the solution of problem (3.3). An estimate analogous to (4.4) can be 
proved for the operator R, the norm [], and the inner product KK, )) hence proving 
Theorem 1. 

We next derive error estimates. Let H = P(H); then from the definition of 8 we 
obviously have 

(4.5) ||H- H|= S. 
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By (4.4), (3.1) and (3.3) 

(4.6) (1 + eCo)[ -Hh] (KRhR - RhHh,H-Hh))h 

< ((Rh - PhRH, H - Hh))h 

((fH - H, H - Hh))h - ((GhM- PhGM, H- Hh))h T1 -T2 

Here M - (x, H)H. 
By the Schwarz inequality and (4.5) 

- Hh]h. 

From (3.5), PhG = Gh and thus (a.2) and (4.3) imply 

|= ((x(, ft) - x(x, H)H, H - Hh)| < C16lH-HhII < C16[H-Hh]h 

Combining the above inequalities gives 
(4 7) [ - ] (E- 1/2 + C1) 8 

(4.7) ~[ft -Hh]h~ (1+e0) 
. 

Using (4.3), the triangle inequality and (4.5) gives estimate (4.1) and completes the 
proof of the theorem. 

We next consider isotropic materials where 

(4.8) x(x, H) = X(CH(x) 1) 
We assume that X is a nonnegative scalar function satisfying 

(a.3) Co(b - a)2 { X(a)a -(b)bI}{ - 

(a.4) IX(a)a - X(b)bI s< Cla -bl 

for nonnegative a and b. Note that (a.3) with CO = 0 is satisfied if X is nondecreas- 
ing. 

PROPOSITION 1. Let 
- 

be defined by (4.8) with a susceptibility function X satisfying 
(a.3)-(a.4). Then (a.1) and (a.2) hold. 

Proof. Let Q(x, y) be defined by 

Q(x, Y) X(Ixl)x-X(lyl) y} {x-y} for x, y in R3. 
From obvious properties of the integral, it is sufficient to show that 

(4.9) Q(x, y)> COIx - y12 
to verify (a.1) and that 

(4.10) IX(IXI)X - X(IY)YI i < Cljx - Yj 
to verify (a.2). We may assume without loss of generality that lxi > IYI and that 
xl > 0. Let 
(4.11) e = x/IxI, 
then 

(4.12) y = Iyl(Ae + w), 
where w is perpendicular to e and IAJ < 1. Let Fx = X(IxlI)Ixl and F, = X(lyl)lYl. 
Using (4.11) and (4.12) it is straightforward to compute 
(4.13) Q(x, y) = (Fx - FY)(lxl - lyl) +(1 - X)(FxJy + Fylxi). 



A NEW PORMULATION OF THE MAGNETOSTATIC FIELD PROBLEM 441 

Thus (4.9) follows immediately from (4.13) and (a.3). 
Let w' IX(Ixl)x - X(Iyl)yl. Using (4.11) and (4.12), we compute 

(4.14) 2= +-F) ?(1 -)(Fy2 + Fy2) 

and 

(4.15) Ix -Y12 = A(IXI - IyI)2 +(1 - X)(IX12 + jyI2). 

Thus (a.2) follows from (a.4) which completes the proof of the proposition. 

5. Applications and Numerical Results. In this section, computational results are 
given which show that the new approach produces noticeable improvements over the 
usual integral method for high permeability calculation in the iron region. In 
addition, we consider a typical B - H curve and see that the constants C0 and C1 of 
(a.1) and (a.2) are comparable in low field calculations. Thus for this application, the 
estimate of Theorem 2 is good even though the permeability is large. 

Our computational examples use an annular iron region in two dimensions of 
inner radius one and outer radius two. We shall consider constant permeability 
calculations with source fields for which analytic results are easily obtained. We only 
consider the errors in the iron domain; consequently, errors obtained may seem 
unreasonably large. Results from these codes show substantial improvement off the 
iron domain and hence do not contradict off iron convergence results for GFUN 
quoted elsewhere. 

For the usual integral calculation we employ the Galerkin type discretization 
corresponding to (2.6). The annular domain is partitioned into Nr X No quadrilateral 
elements and a system with 3 - N, - No unknowns is solved. Unknown field quantities 
are approximated by piecewise constant vector functions and hence the convergence 
is asymptotically (as N, and No tend to infinity) first order. 

FIGURE 1 
The first quadrant mesh used with the new method 
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For the new method which we shall sometimes denote H - V, the annular 
domain is first partitioned into Nr x No quadrilateral regions and then each quadri- 
lateral region is split into four triangular elements (see Figure 1). The subspace Sh is 
defined to be functions which are piecewise linear on the triangles and continuous 
on the entire iron domain. Unknown field quantities are approximated by functions 
which are piecewise constant on the elements and, consequently, the convergence is 
asymptotically first order. The field approximation requires the solution of a system 
with (2N, + 1) No - 1 unknowns. 

The first set of calculations are for an Hs field which is constant and points in the 
x direction. Figure 2 compares the maximum norm difference of the computed and 
the analytic B field on the iron domain for the usual integral method and the new 
approach. This example is really rather special in that the numerical quadratures on 
the right-hand side of (2.6) and (3.3) produce exact integration results. Thus the 
argument in Section 2 is not valid and both the integral approach and the new 
approach give convergence results which are independent of the permeability. 

The errors of the two methods are compared in Figure 3 for a constant Hs 
calculation with a numerical integration error of magnitude 1/N0 added in the 
computation of the quantities on the right-hand side of (2.6) and (3.3). Note that 
both methods are stable with respect to these small quadrature errors in low 
permeability calculation however a drastic difference in convergence is seen in high 
permeability calculations with the integral method where these small quadrature 
errors are blown way out of proportion. As theoretically predicted the new method 
remains stable and convergent throughout the entire permeability region. 

I I I~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

100 

80 - 

0 

s 60 - 

40 - 

20 - 

0 5000 10000 15000 20000 

IBimax 

FIGURE 6 

Bound for Cl/Co a function of BmS, for the permeability of Figure 5 
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For the third example (Figure 4), errors are considered for calculations with 
conductor fields defined by the second harmonic. That is, 

H = (x2 -y2, -2xy). 

These calculations are more representative of the situation encountered in actual 
applications since the quadrature rules give only an approximation to the data for 
(2.6) and (3.3). Note that the error exhibited by the new method is independent of 
the permeability. The errors observed with the usual integral method increase with 
permeability. Note also that a 75% reduction in the mesh size leads to the predicted 
75% error reduction with the new approach while a 75% reduction in mesh with the 
integral method leads to only a 95% error reduction with large /. 

We next apply Proposition 1 to obtain bounds for the ratio Cl/CO as a function 
of the maximum field value I B I1max for a typical B - H curve. Figure 5 gives the 
measured B - H curve for the iron used in the " Colliding Beam Accelerator" (CBA) 
superconducting magnets developed at Brookhaven National Laboratory. Figure 6 
gives the corresponding bound for Cl/CO. Note that the ratio remains relatively 
small so long as IBIm.x is less than about 15000 Gauss. Thus for low field 
applications, Theorem 2 guarantees uniform (independent of the permeability) 
convergence of the nonlinear magnetostatic field problem in the iron domain. 
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